Лекция 15 11.12.2024

Глава VI. Несколько важных теорем

§ 1. Принцип аргумента

10. Логарифмическая производная

Определение.

Пусть f голоморфна в G , за исключением полюсов, и отлична от постоянной, $\varphi = \frac{f'}{f}$ называется логарифмической производной функции f .

Логарифмическая производная определена в области, полученной удалением из G нулей и полюсов функции f .

Название объясняется тем, что при наличии ветви $\,g\,$ логарифма функции $\,f\,$ ($e^{g}=f\,$) имеет место равенство

$$\varphi = \frac{f'}{f} = g'.$$

20. Логарифмический вычет

Определение.

Вычет логарифмической производной называется логарифмическим вычетом.

Предложение.

1) Если $\,z_0^{}\,$ — нуль порядка $\,k\,$ для функции $\,f$, то $\,z_0^{}\,$ — простой полюс для логарифмической производной $\,arphi^{}$ и

$$\operatorname{Res}(\varphi, z_0) = k$$

2) Если z_0 — полюс порядка k для функции f , то z_0 — простой полюс для логарифмической производной φ и

$$\operatorname{Res}(\varphi, z_0) = -k$$

Доказательство.

Функция f может быть представлена в виде

$$f(z) = (z - z_0)^l g(z),$$

где функция g голоморфна и $g\left(z_{0}\right)\neq0$.

Так что

$$f'(z) = l(z - z_0)^{l-1} g(z) + (z - z_0)^{l} g'(z),$$

$$\varphi(z) = \frac{f'(z)}{f(z)} = \frac{l}{z - z_0} + \frac{g'(z)}{g(z)},$$

 z_{0} — простой полюс функции arphi , вычет равен l .

Рассуждение применимо как к нулю, так и к полюсу. Для нуля l=k>0 , для полюса l=-k<0 .

30. Теорема 1. Принцип аргумента.

f голоморфна в односвязной области, за исключением конечного числа полюсов. Γ — простой замкнутый контур в G , не проходящий через нули и полюсы.

Внутри контура расположены нули u_1,\dots,u_p порядков k_1,\dots,k_p и полюсы v_1,\dots,v_q порядков m_1,\dots,m_a ; $P=k_1+\dots+k_p$, $Q=m_1+\dots+m_a$.

Тогда

$$\frac{1}{2\pi i} \int_{\Gamma^+} \frac{f'(z)}{f(z)} dz = P - Q.$$

Доказательство сводится к применению теоремы о вычетах.

Теорема называется принципом аргумента, поскольку интеграл дает приращение логарифма функции f вдоль контура Γ , после деления на i получаем приращение аргумента, интеграл с коэффициентом $\frac{1}{2\pi i}$ — число оборотов точки $w=f\left(z\right)$ вокруг 0 при обходе контура Γ точкой z .

40. Теорема 2. Теорема Руше.

Пусть f,g голоморфны в односвязной области G , Γ — простой замкнутый контур в области G ,

$$\forall z \in \Gamma |f(z)| > |g(z)|.$$

Тогда функции f и h=f+g имеют во внутренности Γ одинаковое число нулей (с учетом кратностей).

Доказательство.

Заметим, что

$$\forall z \in \Gamma \ f(z) \neq 0, \ f(z) + g(z) \neq 0.$$

Далее,
$$h=f\left(1+rac{g}{f}
ight)=f\psi$$
 ,

$$\forall z \in \Gamma$$
 точка $w = \psi(z)$ лежит в круге $|w-1| < 1$,

в котором существует ветвь логарифма, так что

$$\int_{\Gamma} \frac{\psi'(z)}{\psi(z)} dz = 0.$$

Наконец,

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{h'(z)}{h(z)} dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\Gamma} \frac{\psi'(z)}{\psi(z)} dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz$$

и по теореме 1 функции f и h имеют одинаковое число нулей.

Примеры.

1) Основная теорема алгебры.

 $P(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_n$, $f(z) = a_0 z^n$, $g(z) = a_1 z^{n-1} + \dots + a_n$. При достаточно большом R на окружности C_R выполняется неравенство |f| > |g| . По теореме Руше функции f и P = f + g имеют одинаковое число нулей. Функция f имеет n нулей. Многочлен P имеет с учетом кратностей n нулей.

2) Уравнение $z^{15} + 3z^2 + 1 = 0$ имеет в единичном круге два корня.

§ 2. Обращение голоморфной функции

10. Теорема 1.

Пусть f голоморфна в окрестности $U_{\scriptscriptstyle 0}$ точки $z_{\scriptscriptstyle 0}$,

$$f'(z_0) \neq 0$$
.

Тогда существуют окрестности U точки z_0 и V точки $w_0 = f\left(z_0\right)$, такие что

$$f: U \to V$$
 — биекция.

Обратное отображение $\,f^{^{-1}}$ является голоморфной функцией,

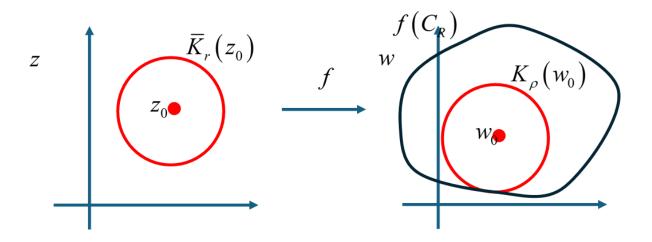
$$(f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))}$$
 (1)

Доказательство.

В условиях теоремы z_0 — простой нуль функции $f\left(z\right) - w_0$, z_0 — изолированный нуль.

Подберем замкнутый круг $\overline{K}_r(z_0)$ \subset G , на котором функция f принимает значение w_0 только в точке z_0 , а производная нигде не обращается в нуль.

Положим $ho = \min_{|z-z_0|=r} \left| f\left(z\right) - w_0 \right| > 0$ и покажем, что $f\left(K_r\left(z_0\right)\right) \supset K_{
ho}\left(w_0\right)$.



Зафиксируем $\,w \in K_{\scriptscriptstyle
ho} \left(w_0
ight) \,$ и напишем равенство

$$f(z)-w = (f(z)-w_0)+(w_0-w).$$

Поскольку $\left|f\left(z\right)-w_{0}\right|\geq
ho>\left|w-w_{0}\right|$ на окружности $\left|z-z_{0}\right|=r$, то в силу теоремы Руше $f\left(z\right)-w$ обращается в нуль на $K_{r}\left(z_{0}\right)$ столько же раз, сколько и $f\left(z\right)-w_{0}$, т.е. один раз.

Выберем $r_{\!\scriptscriptstyle 1} < r$ так, чтобы $f\left(K_{\!\scriptscriptstyle r_{\!\scriptscriptstyle 1}}\!\left(z_{\!\scriptscriptstyle 0}\right)\right) \subset K_{\!\scriptscriptstyle
ho}\!\left(w_{\!\scriptscriptstyle 0}\right)$. Теперь f реализует биекцию $U = K_{\!\scriptscriptstyle r_{\!\scriptscriptstyle 1}}\!\left(z_{\!\scriptscriptstyle 0}\right) \to V = f\left(K_{\!\scriptscriptstyle r_{\!\scriptscriptstyle 1}}\!\left(z_{\!\scriptscriptstyle 0}\right)\right)$. Обратное отображение $g = f^{-1}$ по теореме о производной обратной функции имеет производную

$$g'(w) = \frac{1}{f'(g(w))}$$

 ${f 2^0}$. Рассмотрим теперь случай, где $f'ig(z_0ig) = 0$.

Теорема 2.

Пусть

$$f(z) = w_0 + c_k (z - z_0)^k + c_{k+1} (z - z_0)^{k+1} + \cdots, c_k \neq 0$$

Тогда существуют такие $\,r>0,\; \rho>0\,$, что при любом $\,w\in K_{\rho}\left(w_{0}\right),\; w\neq w_{0}\,$ уравнение

$$f(z) = w$$

имеет ровно k различных корней в круге $|z - z_0| < r$.

Доказательство.

Повторим рассуждение из теоремы 1. При выборе $\,r\,$ потребуем дополнительно, чтобы $\,f^{\,\prime}\,$ на $\,\overline{K}_r\!\left(z_0^{\,}
ight)\,$ обращалась в нуль только в точке $\,z_0^{\,}$.

Можно опять утверждать, что f(z)-w обращается в нуль на $K_r(z_0)$ столько же раз, сколько и $f(z)-w_0$, т.е. k раз (с учетом кратности). Поскольку f' не обращается в нуль, то при $w\neq w_0$ функция f(z)-w может иметь только простые нули, f принимает значение w в k различных точках.

§ 3. Принцип сохранения области

Теорема 1.

Пусть f — отличная от постоянной голоморфная функция в области G .

Тогда f(G) — область.

Доказательство.

Пусть $w_1, w_2 \in f(G)$. Подберем $z_1, z_2 \in G$ так, чтобы $f(z_1) = w_1, f(z_2) = w_2$.

Если путь γ связывает точки z_1, z_2 в области G , то $f \circ \gamma$ связывает $w_1 = f\left(z_1\right), \ w_2 = f\left(z_2\right)$ в множестве $f\left(G\right)$. $f\left(G\right)$ — линейно связное множество.

Пусть $w_0 \in f\left(G\right)$, т.е. $w_0 = f\left(z_0\right)$ для некоторого $z_0 \in G$.

Мы показали, что существуют такие $\,r>0\,$ и $\,
ho>0$, что при условии $\,\left|w-w_0
ight|<
ho\,$ уравнение

$$f(z) = w$$

имеет одно (если $f'ig(z_0ig) \neq 0$) или несколько (если $f'ig(z_0ig) = 0$) решений в круге $\left|z-z_0\right| < r$. В любом случае круг $K_{
ho}ig(w_0ig)$ — часть fig(Gig) , w_0 — внутренняя точка fig(Gig) .

 $f\left(G
ight)$ — открытое множество, $f\left(G
ight)$ — область.

§ 4. Принцип максимума модуля

Теорема 1.

Пусть f — отличная от постоянной голоморфная функция в области G .

Тогда |f| не имеет в G максимумов.

Доказательство.

Возьмем произвольную точку $z \in G$ и окрестность $U \subset G$ этой точки. По принципу сохранения области точка $w = f\left(z\right)$ — внутренняя точка для $f\left(U\right)$, в множестве $f\left(U\right)$ есть точки, находящиеся от 0 на расстоянии, большем |w|, |f| не имеет максимума в точке z.

Следствие 1.

G — ограниченная область. f голоморфна в G , непрерывна на $ar{G}$.

Тогда

$$\max_{z \in \bar{G}} |f(z)| = \max_{z \in \partial G} |f(z)|.$$

Следствие 2.

f голоморфна в области G и не обращается в нуль ни в одной точке.

Тогда |f| не имеет в G минимумов.

Следствие 3.

 $f,\,g\,$ голоморфны в ограниченной области $G\,$ непрерывны на $ar{G}\,.$

Если
$$f=g$$
 на ∂G , то $f=g$